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ABSTRACT

In SRI’s language modeling experiments for the Hub4 domain, three
basic approaches were pursued: interpolating multiple models esti-
mated from Hub4 and non-Hub4 training data, adapting the language
model (LM) to the focus conditions, and adapting the LM to different
topic types.

In the first approach, we built separate LMs for the closely tran-
scribed Hub4 material (acoustic training transcripts) and the loosely
transcribed Hub4 material (LM training data), as well as the North-
American Business News (NABN) and Switchboard training data,
projected onto the Hub4 vocabulary. By interpolating the probabil-
ities obtained from these models, we obtained a 20% reduction in
perplexity and a 1.8% reduction in word error rate, compared to a
baseline Hub4-only language model.

Two adaptation approaches are also described: adapting language
models to the speech styles correlated with different focus conditions,
and building cluster-specific LM mixtures. These two approaches
give some reduction in perplexity, but no significant reduction in
word error.

Finally, we identify the problems and future directions of our work.

1. Introduction

Statistical language models (LMs) will ideally achieve best perfor-
mance when the LM training data is drawn from the same underlying
source as the test speech. However, in many practical situations not
enough training data are available, or the test speech source is con-
stantly changing. For example, Hub4 data consist of speech of
different topics and styles such as planned speech and spontaneous
speech about politics and the stock market. One way to deal with
this problem is to use data from many different sources so as to cover
various sublanguagesin the test source. Another approach is to adapt
the LM to the test speech.

We describe our language modeling work for this Hub4 benchmark
along these two directions: interpolating multiple models estimated
from Hub4 and non-Hub4 training data, and adapting the LMs to the
focus conditions of the test data and to the topic of an article.

Section 2 describes the Hub4 baseline LM. Section 3 discusses the
use of non-Hub4 data sources for LM training. Section 4 describes
the fourgram LM used in the SRI evaluation system. In Section 5,
we discuss adapting LMs to the Hub4 focus conditions. Section 6
presents cluster-specific LM adaptation. Section 7 gives a brief
summary of our work and future directions.

2. The Baseline LM
The recognition process in our system consists of three passes. The
first two passes, lattice and N-best list generation, use a bigram LM.
The N-best lists are rescored using a higher-order N-gram LM.

Two kinds of training material were available from the Hub4 domain.
There were about 130 million words of loosely transcribed broadcast
shows (Hub4 LM training data), as well as 380,000 words of closely
transcribed material for acoustic training. While the first corpus
is much larger, it does not always faithfully represent spontaneous
speech phenomena (such as disfluencies). In addition, the verbaliza-
tion of certain acronyms, Internet addresses, etc., is not transcribed
accurately. For example, the Hub4 LM training data would have
words such as “www.cnn.com”, which are actually verbalized as “w.
w. w. dot c. n. n. dot com”. For these reasons, we decided to treat
these two sets of transcripts separately, and to give more weight to
the acoustic training material, relative to the corpus sizes.

To select the recognizer vocabulary, we first included all words oc-
curring at least twice in the acoustic training data. We then added
words from the LM training data, in order of frequency, until reaching
the target size of 20,000 words. The relatively small vocabulary size
was chosen to allow faster experimentation. The out-of-vocabulary
rate on the development test set was 2.2%.

To obtain the recognizer bigram LM, we built separate LMs from the
Hub4 LM and acoustic training corpora, called H4LM and H4 AC,
respectively. These models were then interpolated linearly so as to
optimize the perplexity on the development test data, giving weight
0.7 to H4LM and 0.3 to H4AC. As expected, the weight assigned to
H4 AC is disproportionately high relative to the sizes of the training
data.

We also built a corresponding interpolated trigram model, which was
used in the rescoring pass. Table 1 gives perplexities and word error
rates (WER) obtained with both bigram and trigram baseline models.

For comparison, we also rescored with a trigram model trained only
from Hub4 LM training data (H4LM). This model has a 17% higher
perplexity and slightly higher word error rate than the combined
H4 LM and H4 AC model, confirming the advantage of a separate
weighting of the acoustic training data.

3. Using Non-Hub4 Training Data
To improve the coverage and robustness of our baseline LM, we used
training material from two generally available non-Hub4 databases.
The Switchboard corpus [3] contains conversationalspeechcollected
over the telephone and can supplement the coverage of various spon-
taneous speech phenomena. The North American Business News



Model PPL WER

H4, bigram (1-pass LM) 242 37.0%
H4, trigram 174 33.8%
H4 LM, trigram 204 34.0%

Table 1: Results of bigram and trigram Hub4 LMs.

(NABN) corpus used in the 1995 CSR evaluation provides addi-
tional coverage of business and politics.

As before, we combine the various data sources through linear in-
terpolation of LMs. Separate backoff LMs [5] were estimated for
each of the four data sources - Hub4 LM data, Hub4 acoustic data,
Switchboard, and NABN - restricting N-grams to the Hub4 20,000
word vocabulary. Word probabilities from the individual models
were interpolated linearly. Interpolation weights were optimized by
minimizing the perplexity on the Hub4 development data. Thus, the
word probability in the combined LM is computed as:

P (w j h) = :64� P (w j h;H4 LM) +

:14� P (w j h;H4 AC) +

:16� P (w j h;NABN) +

:06� P (w j h;SWB)

where H4LM, H4 AC, NABN, and SWB are trigram LMs for Hub4
LM data, Hub4 acoustic data, NABN, and Switchboard, respectively.

Table 2 lists the N-best rescoring results for various interpolated LMs,
showing the contributions of the individual data sources (rescoring
results are given only for the baseline and the full model). As can be
seen, adding new data sources consistently improves performance,
although the contribution of the Switchboard data is marginal.

4. Fourgram LM Used in the Evaluation
System

The LM applied to final rescoring in our evaluation system used all
the data sources discussed in section 3. However, for an additional
improvement, we decided to replace the trigram model component
with the largest weight, H4LM, with a corresponding fourgram
model. Since fourgram models require larger resources to train,
we did not consider such a step worthwhile for the other model
components, because of their smaller weights. In addition, for the
H4 AC and SWB components, there is insufficient training data to
improve on the trigram models. (The interpolation weights were not
changed from the values previously found for the all-trigram model.)

Model PPL WER

H4 (baseline) 174 33.8%
H4 + SWB 172
H4 + NABN 166
H4 + NABN + SWB 163 33.4%

Table 2: Results by using multiple data sources.

Model PPL WER
H4 + NABN + SWB, 3gram 163 33.4%
H4 + NABN + SWB, 4gram 154 33.1%

Table 3: Improvement due to fourgram modeling.

Table 3 shows that the fourgram LM gives us a small, but statistically
significant improvement over the trigram LM.

Summarizing results so far, the fourgram LM incorporating multiple
data sources achieves a 20% reduction in perplexity and a 1.8% rela-
tive reduction in word error rate on the development data, compared
to a baseline trigram LM trained only on Hub4 data.

5. Condition-specific LM

The Hub4 data exhibit a variety of acoustic conditions. For the pur-
poses of the evaluation, the data in the Hub4 benchmark were parti-
tioned into seven different focus conditions [7]. These conditions are
correlated with different speaking styles; for example, condition F0
is planned speech while F1 is spontaneous speech. Since speaking
style affects language modeling, we can try to exploit this correlation
using condition-specific LMs.

Unfortunately, of all the data sources mentioned in Section 3, only
Hub4 acoustic training data are annotated with these focus condi-
tions. Therefore, we separated Hub4 acoustic data into different
subsets based on the focus conditions, trained separate trigram mod-
els for each of them, and interpolated each of the models with a
general LM. The resulting model effectively gives extra weight to
the data of one condition. During partitioned evaluation, we rescore
each utterance using the LM matching the acoustic condition of the
utterance.

The perplexity results for the Hub4 development data are summarized
in Table 4. The first result uses a general LM that was trained only
on Hub4 acoustic training data (H4AC). The condition-specific LM
gives a 5% perplexity reduction in this case.

However, when using the same approach on our best general four-
gram LM, the perplexity reduction becomes marginal. This can be
partly explained by the fact that the condition-specific training data
are several orders of magnitude smaller than the general LM training
data. This suggests that we would need an amount of condition-
specific training data that is comparable to that of the general LM.
However, since extensive hand labeling of more training data is not
feasible, we would need automatic methods for sorting the existing
unlabeled Hub4 training data by condition.

Model General By condition
H4 AC, 3gram 379 361
H4 + SWB + NABN, 4gram 154 151

Table 4: Perplexity results for condition-specific LM



6. Clustering Algorithms for Training Data
The Hub4 domain consists of speech of different topics and styles.
Ideally, if we train topic- and style-specific LMs and correctly iden-
tify them during testing, we expect to improve the performance of
our LM. Since the Hub4 LM data are a collection of unlabeled news
articles, it is not possible to train topic- or style-specific LMs di-
rectly. Therefore, our approach here is to group the training data
into subsets with coherent LM characteristics, which could subsume
categories such as topic or style. To perform this grouping, we use
an unsupervised hierarchical cluster algorithm and distance measure
based on log likelihood. The text units clustered are articles, since
we expect characteristics such as topic to be mostly constant within
articles.

6.1. Agglomerative Clustering Algorithm
The algorithm forms clusters in a bottom-up manner, as follows:

1. Initially, puteach article in its own cluster.

2. Among all current clusters, pick the two clusters with the small-
est distance.

3. Replace these two clusters with a new cluster, formed by merg-
ing the two original ones.

4. Repeat the above two steps until there is only one remaining
cluster in the pool.

Thus, the agglomerative clustering algorithm will result in a binary
cluster tree with single article clusters as its leaf nodes and a root
node containing all the articles.

In the clustering algorithm, we use a distance measure based on log
likelihood. For articlesA andB, the distance is defined as

d(A;B) = LL(A) + LL(B)� LL(A [B) (1)

The log likelihoodLL(X) of an article or clusterX is given by a
unigram model:

LL(X) = log
Y

w2X

pX(w)
cX(w)

=
X

w2X

cX(w) logcX(w)�NX logNX

Here,cX(w) andpX(w) are the count and probability, respectively,
of word w in clusterX, andNX is the total number of words
occurring in clusterX.

Notice that this definition is equivalent to the weighted information
loss after merging two articles:

d
0(A;B) = (NA+NB)H(A[B)�(NAH(A)+NBH(B)) (2)

where
H(X) = �

X

w2X

PX(w) logPX(w) :

To avoid expensive log likelihood recomputation after each cluster
merging step, we define the distance between two clusters with mul-
tiple articles as the maximum pairwise distance of the articles from
the two clusters:

d(C1; C2) = max
A2C1;B2C2

d(A;B) (3)

whereC1 andC2 are two clusters, andA,B are articles fromC1 and
C2, respectively.

Once a cluster tree is created, we must decide where to slice the
tree to obtain disjoint partitions for building cluster-specific LMs.
This is equivalent to choosing the total number of clusters. There is
a tradeoff involved in this choice. Clusters close to the leaves can
maintain more specifics of the word distributions. However, clusters
close to the root of the tree yield LMs with more reliable estimates,
because of the larger amount of data.

We roughly optimized the number of clusters by evaluating the per-
plexity of the Hub4 development test set. We created sets of 1,
5, 10, 15, and 20 article clusters, by slicing the cluster tree at dif-
ferent points. A backoff trigram model was built for each cluster,
and interpolated with a trigram model derived from all articles for
smoothing, to compensate for the different amounts of training data
per cluster. Then, the set of LMs that maximizes the log likelihood
of the Hub4 development data was selected. Given a cluster model
setLM = fLMig, the test set log likelihood was obtained as an
approximation to the mixture-of-clusters model:

P (w j LM) =
X

i

P (LMi) � P (w j LMi)

� P (LMi� ) � P (w j LMi� )

/ P (w j LMi�)

where

i
� = argmax

i

P (LMi j A) ;

andP (LMi) andP (LMi j A) are the prior and posterior cluster
probabilities, respectively.

In training,A is the reference transcript for one story from the Hub4
development data. During testing,A is the 1-best hypothesis for the
story, as determined using the standard LM.

Note thatP (w j LM) depends on the smoothing weights used to
computeP (w j LMi), which in turn determine which cluster a
story is assigned to, which in turn determines the best smoothing
weights. Therefore, we jointly optimize smoothing and cluster as-
signment in an iterative procedure. First, the posterior probabilities
of the smoothed cluster LMs given reference transcripts for a story
were calculated. Then, stories with the highest posterior probability
of a samecluster LM were merged. The interpolation weight for
the cluster LM and the general LM was tuned by maximizing the
likelihood of the segments in the story cluster corresponding to the
cluster LM. These steps were iterated until all cluster assignments
became stable and the interpolation weights converged.



6.2. Practical Considerations

If the number of articles in a training data isN , the pairwise dis-
tance computation in the clustering algorithm will takeO(N2) steps
andO(N2) memory units. There are a total of 120,000 articles
in the Hub4 LM training data, making this a challenging computa-
tional task. Applying the standard clustering algorithm would require
roughly 60 GB of disk space to store the cluster tree and associated
data, which was infeasible. To overcome this problem, we used a
modified, two-stage agglomerative clustering algorithm.

In the first stage, 120,000 articles were divided into 20 sets of roughly
equal sizes (about 6,000 articles for each set). We built a cluster tree
for each set, resulting in 20 trees with125,000 articles as their leaf
nodes. For each of the 20 trees, 250 cluster nodes were then chosen
for second-stage clustering. Therefore, for the 20 sets, there were
a total of 5000 leaf clusters in the second stage. We used 250
clusters for each set so that the first stage did not enforce too many
suboptimal clusters, since this stage did not consider data similarity
across partitions. In the second stage, these5000 clusters were
further clustered into a super-cluster tree.

Using this approach, and choosing the optimal number of clusters
in the second stage by the method described earlier, we obtained a
set of 10 clusters. Manual inspection revealed that some are indeed
strongly centered around topics, such as the O. J. Simpson trial, or
stock market issues. Others do not seem to correspond to topics, but
of course they might capture other distributional characteristics that
are simply less obvious on inspection. Alternatively, clusters may
represent collections of disparate topics that would reveal themselves
on closer inspection, or if we had chosen a finer cluster granularity.

We also note that the clustering algorithm is suboptimal in several
ways. One reason for suboptimality is the two-stage approximation
described above. Even the single-stage algorithm may make sub-
optimal cluster choices because of its greedy nature. Finally, the
distance measure used is only an approximation of an ideal measure.
The likelihood is derived from unigram statistics, and a distance be-
tween higher-level clusters is approximated by the maximal pairwise
distance among cluster members.

We were able to explore only some of the possible variations of the
cluster model that suggest themselves. So far, these have not yielded
significantly different results, as described in the Section 6.3. In
particular, we experimented withk-means style clustering as a way to
further optimize the cluster membership assignmentonce the number
of clusters was chosen. In addition, the unigram likelihood distance
was replaced with a corresponding measure based on bigrams.

In thek-means clustering, for each article in the Hub4 LM data, its
perplexity was measured with respect to each of 10 cluster LMs pre-
viously computed using the greedy algorithm described earlier. The
membership of articles in clusters was then recomputed by picking
the lowest perplexity model for each article, and the cluster models
were recomputed based on the new memberships. This process was
iterated until two consecutive iterations resulted in identical mem-
berships, the average log likelihood did not change, or disk space
was exhausted.

6.3. Results and Discussion

Experiments were conducted on the Hub4 development data to com-
pare the performance of the single, general LM to that of a cluster

General LM Cluster LM
Model PPL WER PPL WER

H4 LM, trigram 195 34.0% 184
H4 + SWB + NABN, 156 33.4% 154

trigram
H4 + SWB + NABN, 147 33.1% 146 33.0%

4gram

Table 5: Results of cluster LMs.

LM.

Results for the basic clustering algorithm are shown in Table 5. We
compared perplexities of the cluster model tononclustered models
based on various training corpora. In all cases, only Hub4 LM
training data were clustered, whereas the general LM component
varied across experiments.

As expected, the largest relative improvements are obtained when the
generalLM is basedon the same data (H4LM) as the cluster models,
yielding a 5% perplexity reduction. The improvements become
successively smaller as more data are added to the general LM,
similar to the results for the condition-specific LMs (see Section 5).
We observed no significant word error rate reduction over the full
fourgram LM. This suggests extending the clustering to the non-
Hub4 data sources.

We also computed perplexity of the cluster LMs trained using the
k-means approach. Results showed no significant improvement on
perplexity and word error rate. On inspection, the new clusters did
not seem to be more topic-coherent than the original ones. However,
note that thek-means stage is based on the original 10 clusters. If
one article does not belong to any cluster with a distinct topic, it will
likely be assigned to a cluster with many topics. So it makes sense
that k-means iterations will not improve clusters that are already
incoherent.

One of the reasonsour clustering approach has not yielded significant
improvements so far may be cluster size. As described in Section 6.1,
we varied the number of clusters between 1 and 20, partly because
of computational constraints. This results in very large cluster sizes,
not allowing the cluster models to be highly specialized, e.g., to
a specific subtopic. Related approaches by other researchers have
effectively used much smaller amounts of target-specific training
data for LM adaptation purposes. For example, [6] reported small
but significant improvements by using the 50 closest articles to the
segment hypotheses within a story boundary. Similarly, [4] reported
improvements by interpolating an in-domain LM with out-of-domain
articles, which were weighted by a distance metric defining how sim-
ilar they were to the target domain. However, since these approaches
also used different distance measures, more careful examination is
needed to asses the effect of cluster size on the performance of the
adapted LM.

Another general issue in clustering is the choice of distance metric. In
particular, it is not clear whether the distance metric should measure
similarity of lower- or higher-order statistics. The main argument
for using higher order statistics (as opposed to just unigrams) is
that our eventual LM uses trigrams and fourgrams, so lower-order
similarity of potential training material may not be as relevant to



the performance of the final model. For example, unigrams might
not capture differences in style reflected in word collocations. In
addition, isolated words are often ambiguous, and may be indicative
of a topic only when used in conjunction with nearby words. For
example, the word “drug” could be used to describe abuse by athletes
for performance enhancement, or to refer to cases of recreational
drug use by sports celebrities. To disambiguate such uses one would
probably have to look at higher-order statistics of content words
(and not just longer N-grams) [1]. However, the use of higher-order
statistics could subject the similarity measure to too much noise,
given that they are unreliable when collected on small samples.

Alternatively, the unigram distance metric can be made even less sen-
sitive to stylistic and grammatical differences by omitting function
and other high-frequency words from the similarity assessment. This
is common practice in information retrieval (IR), and was also used
for LM adaptation [6] and topic identification [2]. This approach
focuses the similarity measure on semantic aspects and makes it less
sensitive to syntactic features.

So far, we have experimented with only a few of the many choices
on this continuum. Besides the plain unigram distance, we also tried
using both bigram distance and a modified unigram distance that ig-
nored a list of “stop-words” commonly used in information retrieval.
Neither of these resulted in significant differences. Obviously, fur-
ther investigation into the use of higher-order features for distance
measures is needed.

7. Summary
In our language modeling experiments with the Hub4 task, we in-
vestigated the use of non-Hub4 data for increased LM robustness,
as well as various forms of LM adaptation. The only significant
improvements over a standard Hub4 trigram model were due to out-
of-domain training data, namely from the NABN and Switchboard
corpora. It was also advantageous to treat the acoustic training
transcripts separately from the LM training texts, giving them dis-
proportionate weight in the overall LM. As expected and found by
others, a fourgram LM gives some improvement over the standard
trigram model.

Adaption of the LM to the acoustic focus condition seems to work in
principle, but suffers from the lack of a sufficient amount of labeled
training data. Unsupervised clustering of the training data is another
promising approach. We plan to continue developing this technique
by optimizing some of its many parameters, such as cluster number
and size, choice of distance metric, use of higher-order features and
semantic versus syntactic similarity.
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